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Abstract

A heterogeneous computing system provides a variety of different machines, orchestrated to perform an
application whose subtasks have diverse execution requirements. The subtasks must be assigned to machines
(matching) and ordered for execution (scheduling) such that the overall application execution time is minimized. A
new dynamic mapping (matching and scheduling) heuristic called the hybrid remapper is presented here. The
hybrid remapper is based on a centralized policy and improves a statically obtained initial matching and scheduling
by remapping to reduce the overall execution time. The remapping is non-preemptive and the execution of the
hybrid remapper can be overlapped with the execution of the subtasks. During application execution, the hybrid
remapper uses run-time values for the subtask completion times and machine availability times whenever possible.
Therefore, the hybrid remapper bases its decisions on a mixture of run-time and expected values. The potential of
the hybrid remapper to improve the performance of initial static mappings is demonstrated using simulation studies.

Keywords: dynamic scheduling, heterogeneous computing, list scheduling, mapping, matching, parallel
processing, scheduling.

1. Introduction

Different portions of a computationally intensive application often require different types of computations. In
general, a given machine architecture with its associated compiler, operating system, and programming environment
does not satisfy the computational requirements of all portions of an application equally well. However, a
heterogeneous������������ computing��������� (HC���) environment that consists of a heterogeneous suite of machines and high-speed
interconnections provides a variety of architectural capabilities, which can be orchestrated to perform an application
that has diverse computational requirements [2, 10, 14, 15]. The performance criterion for HC used in this paper is
to minimize the completion��������� time����, i.e., the overall execution time of the application on the machine suite.

One way to exploit an HC environment is to decompose an application task into subtasks, where each subtask is
computationally well suited to a single machine architecture. Different subtasks may be best suited for different
machines. The subtasks may have data dependencies among them, which could result in the need for inter-machine
communications. Once the subtasks are obtained, each subtask is assigned to a machine (matching��������). The subtasks
and inter-machine data transfers are ordered (scheduling���������) such that the overall completion time of the application is
minimized. It is well known that such a matching and scheduling (mapping�������) problem is, in general, NP-complete
[3]. Therefore, many heuristics have been developed to obtain near-optimal solutions to the mapping problem. The
heuristics can be either static����� (matching and scheduling decisions are made prior to application execution) or
dynamic������� (matching and scheduling decisions are made during application execution).

Most static mapping heuristics assume that accurate estimates are available for (a) subtask computation times
on various machines and (b) inter-machine data transfer times. Often, it is difficult to accurately estimate the above
parameters prior to application execution. Therefore, this paper proposes a new dynamic algorithm, called the
hybrid������ remapper��������, for improving the initial static matching and scheduling. The hybrid remapper uses the run-time



values that become available for subtask completion times and machine availabilities during application execution
time. It is called the hybrid remapper because it uses some results based on an initial static mapping in conjunction
with information available only at execution time.

The hybrid remapper heuristics presented here are based on the list scheduling class of algorithms (e.g., [1, 9]).
An initial, statically obtained mapping is provided as input to the hybrid remapper. If the initial mapping is not
provided, it should be obtained before running the hybrid remapper by executing a static mapping algorithm such as
the baseline [18], genetic-algorithm-based mapper [18], or Levelized Min Time [9].

The hybrid remapper executes in two phases. The first phase of the hybrid remapper is executed prior to
application execution. The set of subtasks is partitioned into blocks such that the subtasks in a block do not have
any data dependencies among them. However, the order among the blocks is determined by the data dependencies
that are present among the subtasks of the entire application. The second phase of the hybrid remapper, executed
during application run time, involves remapping the subtasks. The remapping of a subtask is performed in an
overlapped fashion with the execution of other subtasks. As the execution of the application proceeds, run-time
values for some subtask completion times and machine availability times can be obtained. The hybrid remapper
attempts to improve the initial matching and scheduling by using the run-time information that becomes available
during application execution and the information that was obtained prior to the execution of the application. Thus,
hybrid remapper’s decisions are based on a mixture of run-time and expected values.

This research is part of a DARPA/ITO Quorum Program project called MSHN������ (Management System for
Heterogeneous Networks). MSHN is a collaborative research effort that includes NPS (Naval Postgraduate School),
NRaD (a Naval Laboratory), Purdue, and USC (University of Southern California). It builds on SmartNet, an
operational scheduling framework and system for managing resources in a heterogeneous environment developed at
NRaD [6]. The technical objective of the MSHN project is to design, prototype, and refine a distributed resource
management system that leverages the heterogeneity of resources and tasks to deliver the requested qualities of
service.

The organization of this paper is as follows. The matching and scheduling problem and the associated
assumptions are defined in Section 2. Three variants of the hybrid remapper heuristics are described in Section 3.
Section 4 examines the data obtained from the simulation studies conducted to evaluate the performance of the
hybrid remapper heuristic. In Section 5, related work is discussed. Finally, Section 6 gives some future research
directions.

2. Problem Definition

The following assumptions are made regarding the application. The application is decomposed into multiple
subtasks and the data dependencies among them are known and are represented by a directed������� acyclic������ graph����� (DAG�����).
That is, the nodes in the DAG represent the subtasks and the links represent the data dependencies. An estimate of
the expected computation time of each subtask on each machine in the HC suite is known a priori. This assumption
is typically made when conducting mapping research (e.g., [4, 7, 13, 16]). Finding the expected computation time is
another research problem. Approaches based on analytical benchmarking and task profiling are surveyed in [14, 15].
Any loops and data conditionals are assumed to be contained inside a subtask.

It is assumed that the hybrid remapper is running on a dedicated workstation and all mapping decisions are
centralized. Once a subtask is mapped onto a machine it is inserted into a local job queue on that particular
machine. The execution of the subtask is managed by the job control environment of the local machine. The
subtask executions are non-preemptive. All input data items of a subtask must be received before its execution can
begin, and none of its output data items are available until its execution is completed. These assumptions make the
matching and scheduling problem in HC systems more manageable. Nevertheless, solving the mapping problem
with these assumptions is a significant step toward solving the more general problem.

An application task is decomposed into a set of subtasks S� , where si�� is the i -th subtask. Let the HC
environment consist of a set of machines M�� , where mj be the j -th machine. The estimated expected computation
time of subtask si on machine mj is given by ei ,j���. The earliest time at which machine mj is available is given by
A [j ]����, where |A | = |M | .

The data communication time between two machines has two components: a fixed message latency for the first
byte to arrive and a per byte message transfer time. An |M | × |M | communication������������� matrix������ is used to hold these
values for the HC suite. Similar matrices are used by other researchers in HC (e.g., [7, 13, 16]).

To facilitate the discussion in Section 3, a hypothetical node called an exit node is defined for the DAG as
follows. An exit��� node (subtask) is a node with 0 computation time that is appended to the DAG such that there is a
0 data transfer time communication link to this node from every node in the DAG that does not have an output edge.
The critical������ path���� for a node in the DAG is defined as the longest path from the given node to the exit node.

3. The Hybrid Remapper Algorithm

3.1. Overview

The notion behind most dynamic mapping algorithms is that due to the dynamic nature of the mapping problem,
it is not efficient to use a fixed mapping computed statically. Therefore, most dynamic mappers regularly either
generate the mapping or refine an existing mapping at various times during task execution. That is, dynamic
mapping algorithms solve the mapping problem by solving a series of partial mapping problems (consisting of only



a subset of the original set of subtasks). The partial mapping problem is usually solved by a static mapping heuristic.
Because the mapping is performed in real time, it is necessary to use a fast algorithm to avoid any machine idle
times that occur from having to wait for the mapper to complete its execution. In the hybrid remapper algorithm
presented here, the partial mapping problem is solved using a list-based scheduling algorithm.

In the following subsections, three variants of the hybrid remapper algorithm are described. The first phase,
common for all three variants of the hybrid remapper, involves partitioning the subtasks into blocks and assigning
ranks to each subtask (where the rank indicates the subtask’s priority for being mapped, as defined below). The
variants of the hybrid remapper differ in the second phase by the minimization criteria they use and by the way they
order the subtasks examined by the partial mapping problem. One variant of the hybrid remapper attempts to
minimize the expected partial completion time at each remapping step, and the others attempt to minimize the
overall expected completion time. Two variants of the hybrid remapper order the subtasks at each remapping step
using ranks computed at compile time, and the other using a parameter computed at run time.

3.2. Partitioning and Rank Assignment

This first phase uses the initial static mapping, expected subtask computation times, and expected data transfer
times to preprocess the DAG that represents the application. Initially, the DAG is partitioned into B�� blocks
numbered consecutively from 0 to B−1. The partitioning is done such that the subtasks within a block are
independent, i.e., there are no data dependencies among the subtasks in a block. All subtasks that send data to a
subtask sj in block k must be in any of blocks 0 to k −1. Furthermore, for each subtask sj in block k there exists at
least one incident edge (data dependency) such that the source subtask is in block k −1, i.e., an incident edge from
some si . The (B−1)-th block includes the subtasks without any successors and the 0-th block includes only those
subtasks without any predecessors. The exit node is not included in any block in the DAG partitioning. The three
blocks obtained using this partitioning algorithm for an example seven node DAG is shown in Figure 1(a).

Once the subtasks in the DAG are partitioned, each subtask is assigned a rank by examining the subtasks from
block B−1 to block 0. The rank���� of each subtask in the (B−1)-th block is set to its expected computation time on the
machine to which it was assigned by the initial static matching. Now consider the k -th block, 0 ≤ k < B−1. Recall
ei ,x is the expected computation time of the subtask si on machine mx . Let ci ,j��� be the data transfer time for a
descendent sj of si to get all the relevant data items from si . The value of ci ,j will be dependent on the machines
assigned to subtasks si and sj by the initial mapping, and the information in the communication matrix. Let iss(si )�����
be the immediate��������� successor�������� set��� of subtask si such that there is an arc from si to each member of iss(si ) in the DAG.
In the equation below, each ei ,x implies subtask si is assigned to machine mx by the initial mapping. With these
definitions, the rank of a subtask si is given by:

rank(si ) = ei ,x +
max

sj∈ iss(si )
(ci ,j + rank(sj ))

Figure 1(b) illustrates the rank assignment process for the subtask si . The rank of a subtask can be interpreted
as the length of the critical path from the point the given subtask is located on the DAG to the exit node, i.e., the
time until the end of the execution of all its descendents. Two variants of the hybrid remapper described here are
based on the heuristic idea that by executing the subtasks with higher ranks as quickly as possible, the overall
expected completion time for the application can
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Figure 1: (a) Partitioning a DAG into blocks and (b) assigning ranks to the nodes of a DAG.

be minimized.



3.3. Common Portion of the Run-Time Phase

In all three variants of the hybrid remapper, the execution of the subtasks proceeds from block 0 to block B−1.
A block k is considered to be executing if at least one subtask from block k is running. Also, the execution of
several blocks can overlap with each other in time, i.e., subtasks from different blocks could be running at the same
time.

The hybrid remapper changes the matching and scheduling of the subtasks in block k while the subtasks in
block (k −1) or before are being executed. The hybrid remapper starts examining the block k subtasks when the first
block (k −1) subtask begins its execution. When block k subtasks are being mapped, it is highly likely that run-time
completion time information can be used for many subtasks from blocks 0 to k −2. There may be some subtasks
from blocks 0 to k −2 that are still running or waiting execution when subtasks from block k are being considered
for remapping. For such subtasks, expected completion times are used.

3.4. Minimum Partial Completion Time Static Priority (PS) Algorithm

As mentioned earlier, the hybrid remapper uses a list-scheduling type of algorithm to recompute the matching
and scheduling for the subtasks in each block. In a list-scheduling type of algorithm, the subtasks are first ordered
based on some priority. Then, each subtask is mapped to a machine by examining the list of subtasks from the
highest priority subtask to the lowest priority subtask. The machine to which each subtask is assigned depends on
the matching criterion used by the particular algorithm.

In this variant of the hybrid remapper, the priority of a subtask is equal to the rank of that subtask that was
computed statically in the first phase (Subsection 3.2). The matching criterion used for subtask si is the
minimization of the partial completion time, defined below. Thus, this variation is referred to as the minimum��������
partial������ completion��������� time���� static����� priority������ (PS���) algorithm.

Let mx be the machine on which si is being considered for execution. Then let pct(si ,x )�������� denote the partial������
completion��������� time���� of the subtask si on machine mx , dr(si )����� be the time at which the last data item required by si to
begin its execution arrives at mx , and ips(si )������ be the immediate��������� predecessor���������� set��� for subtask si such that there is an arc
to si from each member of ips(si ) in the DAG. For any subtask si in block 0, pct(si ,x ) = ei ,x . For any subtask si
not in block 0, where sj ∈ ips(si ), and sj is currently mapped onto machine my ,

dr(si ) =
max

sj ∈ ips(si )
(cj ,i +pct(sj ,y ))

pct(si ,x ) = ei ,x+max(A [x ], dr (si ))

In the computation of pct(si ,x ), the above equation is recursively used until subtask sj is such that its run-time
completion time on machine my is available or subtask sj is in block 0. The subtask si is remapped onto the
machine mx that gives the minimum pct(si ,x ), and A [x ] is updated using pct(si ,x ). Then the next subtask from the
list is considered for remapping.

3.5. Minimum Completion Time Static Priority (CS) Algorithm

The notion behind the PS algorithm was that by remapping the highest rank subtask si to execute on the
machine that will result in the smallest expected partial completion time, the overall completion time of the
application may be minimized. Instead of this approach, the variant of the hybrid remapper described here attempts
to minimize the overall completion time by remapping each subtask si in block k such that the length of the critical
path through subtask si is reduced. Thus, this variation is referred to as the minimum�������� completion��������� time���� static����� priority������
(CS���) algorithm. The reason for considering both PS and CS is that in PS the remapping is faster but CS attempts to
derive a better mapping because it considers the whole critical path through si .

Let mx be the machine on which si is being considered for execution. Then let the longest completion time path
from a block 0 subtask to the exit node through the subtask si be ct(si ,x )�������. The overall completion time of the
application task is determined by one such longest path through a block k subtask. Consider the subtask si in Figure
2. Assume that the longest path through si is shown by bold edges in Figure 2. For any subtask si ,

ct(si ,x ) =
max

sj∈iss(si )
(pct(si ,x )+ci ,j +rank(sj )) = pct(si ,x )+

max
sj∈iss(si )

(ci ,j +rank(sj ))

The subtask si is remapped onto the machine mx that gives the minimum ct(si ,x ), and A [x ] is updated using
pct(si ,x ). Then the next subtask in the list is considered for remapping.

3.6. Minimum Completion Time Dynamic Priority (CD) Algorithm

The rank of a subtask si is computed prior to application execution. Therefore, if si is remapped to a machine
other than the one it was assigned to by the initial static mapping, the rank of si may not give the length of the
critical path from si to the exit node.

The algorithm presented here is same as the CS algorithm, except ranks are no longer used in ordering the
subtasks within a block. Instead of using the statically computed ranks, this algorithm uses the value of ct(si ,x ),
where mx is the machine assigned to si in the initial mapping, to order the subtasks within a block. Thus, this
variation is referred to as the minimum�������� completion��������� time���� dynamic������� priority������ (CD���) algorithm.



The example shown in Figure 3 illustrates why using ranks computed at compile time to order the subtasks
within a block may not lead to the best overall completion time. In the given example, the DAG shown in Figure
3(a) is mapped onto two machines m 0 and m 1. Figure 3(b) shows the subtask computation time matrix, which gives
the computation time of a subtask on different machines. The initial static mapping is shown in Figure 3(c). The
numbers inside each bar correspond to the subtask index and the execution time of the subtask, in ‘‘subtask
index/execution time’’ notation. The times are given in seconds. The data transfer times are negligible if the source
and destination machines are the same, otherwise, for this example there is a fixed time of two seconds for the data
transfer. In Figure 3(a), the number outside each node indicates the rank of that subtask derived using the initial
mapping.

When block 2 is considered for remapping by either the PS or CS algorithm, s 5 is mapped first and then s 4 is
mapped. Suppose s 0 finishes its execution in 20 seconds instead of 10 seconds and s 1 finishes in 10 seconds. This
causes the subtask s 4 to become critical and s 5 to become non-critical, i.e., s 5 is not part of the critical path
anymore. By using the rank numbers that were statically computed, the PS and CS algorithms map s 5 before s 4.
Thus, s 5 will be mapped to the best machine and this can delay the completion of s 4. Instead of using the statically
computed ranks, the CD algorithm considers ct(si ,x ), where subtask si is assigned to mx in the initial mapping. For
this example, subtask s 4 is assigned to machine m 0 and subtask s 5 is assigned to machine m 1. Therefore, the CD
algorithm considers ct(s 4,0) and ct(s 5,1) to determine the remapping order.

ct(s 4,0) = 20+15+10+10 = 55
ct(s 5,1) = 10+20+10+2+10 = 52

Because the value of ct(s 5,1) is less than the value of ct(s 4,0), s 4 is considered for remapping before s 5 by the CD
algorithm. This example illustrates that using ct(si , x ), where mx is the machine that is assigned to si in the initial
mapping, enables the remapping algorithm to track the critical path better than using the static ranks.
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4. Experimental Results and Discussion

4.1. Simulation Parameters

A simulator was implemented to evaluate the performance of the hybrid remapper variants. Various parameters
are given as input to the simulator. Some parameters are specified as fixed values, e.g., number of machines, and
others as a range of values with a maximum and a minimum value, e.g., subtask computation time. When a range is
specified, the actual value is set to a random value within the specified range. Each data point in the results
presented in this section is an average of 100 simulation runs. The experiments were performed on a Sun Ultra with
a SPARC processor running at 165 MHz.

To generate a DAG that represents an application, the number of subtasks, maximum out degree of a node,
number of data items to be transferred among different subtasks, range for subtask computation times, and range for
data item sizes are provided as input to the simulator. Using these input parameters the simulator creates a table
with the subtasks along the columns and data items along the rows. If a subtask sj produces a data item di then the
cell (i ,j ) has the label PRODUCER and if the subtask sj consumes a data item di then the cell (i ,j ) has the label



item, a producer is randomly picked and then consumers are picked such that the resulting graph is acyclic and the
maximum out degree constraints are satisfied.

To define the HC suite, the number of machines is provided as input. The simulator randomly generates valid
subtask computation times to fill a table that determines the subtask computation times on each machine in the HC
suite. For these experiments it is assumed that a fully connected, contention-free communication network is used.
The inter-machine communication times are source and destination dependent. Communication times are specified
by a range value. The run-time value of a parameter such as the subtask execution time or inter-subtask data
communication time can be different from the expected value of the parameter. The variation is modeled by
generating simulated�������� run-time������� values������ by sampling a probability distribution function (PDF) that has the expected
value of the parameter as the mean.

4.2. Generational Scheduling

In this subsection, the generational scheduling (GS���) algorithm [5] is briefly described. The performance of the
hybrid remapper is compared with the performance of the GS algorithm in the next subsection. The GS algorithm is
a dynamic mapping heuristic for HC systems.
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Figure 3: An example mapping to illustrate the benefit of the CD algorithm: (a) the partitioned DAG,
(b) the subtask computation time matrix, and (c) the initial mapping.

Initially, the GS forms a partial scheduling problem by pruning all the subtasks with unsatisfied precedence
constraints from the initial DAG that represents the application. The initial partial scheduling problem consists of
subtasks that correspond to those in block 0 of the hybrid remapper approach. The subtasks in the initial partial
scheduling problem are then mapped onto the machines using an auxiliary scheduler. The auxiliary scheduler
considers the subtasks for assignment in a first come first serve order. A subtask is assigned to a machine that
minimizes the completion time of that particular subtask.

When a subtask from the initial partial scheduling problem completes its execution, the GS algorithm performs
a remapping. During the remapping, the GS revises the partial scheduling problem by adding and removing subtasks
from it. The completion of the subtask that triggered the remapping event may have satisfied the precedence
constraints of some subtasks. These subtasks are added to the initial partial scheduling problem. The subtasks that
have already started execution are removed from the initial partial scheduling problem. Once the revised partial
scheduling problem is obtained, the subtasks in it are mapped onto the HC machine suite using the auxiliary
scheduler. This procedure is iteratively performed until the completion of all subtasks.



4.3. Hybrid Remapper

From the discussions in Section 3, it can be noted that the hybrid remapper is provided with an initial mapping
that is derived prior to application execution using a static matching and scheduling algorithm. The simulator
generates a random DAG, using the parameters it receives as input, at the beginning of each simulation run. An
initial static mapping for this DAG is obtained by matching and scheduling this DAG onto the HC suite using the
baseline������� algorithm�������� [18].

The baseline algorithm that is used to derive the initial mapping is a fast static matching and scheduling
algorithm. It partitions the subtasks into blocks using an algorithm similar to the one described in Subsection 3.2.
Once the subtasks are partitioned into blocks, they are ordered such that a subtask in block k comes before a subtask
in block l , where k <l . The subtasks in the same block are arranged in descending order based on the number of
descendents of each subtask (ties are broken arbitrarily). The subtasks are considered for assignment by traversing
the list, beginning with block 0 subtasks. A subtask is assigned to the machine that gives the shortest time for that
particular subtask to complete.

In this simulator, three different PDFs (a) Erlang(2) [12], (b) uniform, and (c) skewed uniform are used to
generate the simulated run-time values. For Erlang(2), the expected values are provided as the mean and the PDF is
sampled to obtain a simulated run-time value. In Figure 4, 10,000 consecutive random numbers generated by the
Erlang(2) random number generator with mean ten is shown using a 200-bin histogram. For the skewed uniform
PDF, the following rule is used to generate the simulated run-time value. Let α1�� be the negative percentage
deviation, α2�� be the positive percentage deviation, and u� be a random number that is uniformly distributed in [0,1].
Then, the simulated run-time value of a parameter τ can be modeled as τ × (100−α1+(α1+α2)u )/100. For the
uniform PDF, α1 = α2 = α. For the simulation results presented here, Erlang(2) is used unless otherwise noted.
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Figure 4: A 200-bin histogram for 10,000 consecutive samples of the Erlang(2) random number
generator with mean equal to ten.

In these experiments, baseline������� refers to first deriving a static mapping using the baseline algorithm and expected
subtask computation and communication times, and then, using this mapping, computing the total application
execution time based on the simulated run-time values for computation and communication times. Also, in these
experiments, ideal���� refers to deriving a static mapping using the baseline algorithm and simulated run-time values
(instead of the expected values) for subtask computation and communication times. Note that this ideal is used for
comparison purposes only, and cannot be implemented in practical environments. Also note that the ideal is not
necessarily the optimal mapping. These simulated run-time values are also used to evaluate the application task
completion time with the hybrid remapper variants.

In Figure 5(a), the performance of the PS algorithm is compared to the mapping that is obtained using the
baseline algorithm for ten machines. Figure 5(b) shows a similar comparison for the CS algorithm for ten machines.
The performance of the CD algorithm is shown in Figures 6(a) and 6(b). Figure 6(a) compares CD and the baseline
for varying numbers of subtasks and ten machines. Figure 6(b) compares the two approaches for varying numbers of
machines and 200 subtasks.
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Figure 5: Performance of the hybrid remapper versus the baseline for (a) the PS algorithm and (b)
the CS algorithm.

From Figures 5(a), 5(b), and 6(a) it can be observed that the performance difference among the three variants is
almost negligible. The heuristic improvements performed to obtain the CS and CD variants from the PS variant of
the hybrid remapper make the CS and CD use more initial matching and scheduling derived information. That is,
while CS and CD use more information in an attempt to derive a better mapping than the PS, the information is
based on expected values, rather than run-time values. Thus, there is no significant improvement. Also, in these
simulation studies, the initial mapping is obtained using a simple baseline algorithm. The performance of CS and
CD may improve if a higher quality initial assignment is used, e.g., if a genetic algorithm based mapper [18] is used
for the initial matching and scheduling.

As the number of subtasks increase, the performance difference between each hybrid remapper variant and the
baseline increases. This increase in performance can be attributed to two factors: (a) increased number of
remapping events and (b) increased average number of subtasks per block. Increasing the number of remapping
events provides the hybrid remapper with more opportunities to exploit the run-time values of parameters that are
available during application execution. Also, with the increased number of subtasks per block the hybrid remapper
can derive schedules that are very different from the initial schedule. Therefore, the average performance of the
hybrid remapper increases with increasing number of subtasks.

Ten machines and 100 subtasks were used in Figure 7. In Figure 7(a), the performance of the CD algorithm is
compared with the baseline for varying computation/communication ratios and Figure 7(b) shows the performance
comparison of the CD algorithm with the baseline for varying average number of subtasks per block. Figure 7(a)
shows that the hybrid remapper performs better as the computation/communication ratio increases. The
computation/communication ratio is the average subtask execution time divided by the average inter-subtask
communication time. In Figure 7(a), the low computation/communication ratio denotes the range 1.0-10.0, medium
computation/communication ratio denotes the range 10.0-200.0, and high computation/communication ratio denotes
the range 200.0-4000.0. With increasing computation/communication ratio, the data transfer times become less
significant compared to the subtask computation times. The reason for the hybrid remapper not performing well
with a low computation/communication ratio is currently under investigation.
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Figure 6: Performance of the CD algorithm versus the baseline for (a) varying the subtasks and (b)
varying the machines.

From Figure 7(b) it can be noted that the relative performance of the CD algorithm increases with increasing
the average number of subtasks per block. When there are more subtasks per block, it is possible for the hybrid
remapper to derive mappings that are very different from the initial mapping.
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Figure 7: Performance of the CD algorithm versus the baseline for (a) varying the
computation/communication ratio and (b) varying the average number of subtasks per block.

Figure 8(a) compares the performance of the CD algorithm with the baseline algorithm for a uniform
distribution PDF, 20 machines, and 200 subtasks. Figure 8(b) performs the same comparison for a skewed uniform
distribution PDF, 20 machines, and 200 subtasks. In the skewed uniform distribution the negative percentage
deviation is half of the positive percentage deviation.
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Figure 8: Performance of the CD algorithm versus the baseline for (a) using the uniform
distribution for parameter modeling and (b) skewed uniform for parameter modeling.

As noted earlier, one of the features of the hybrid remapper algorithm that is presented here is overlapping its
operation with the execution of the subtasks. To obtain complete overlap, in the worst case, the remapping time for
a block of subtasks should be less than the execution time of the smallest subtask in the previous block. More
precisely, the time available for remapping block k is equal to the difference between the time the first block k −1
subtask begins execution and the time the first block k subtask can begin execution. Figure 9(a) shows the per
block remapping time for the CD algorithm for varying numbers of subtasks and ten machines. In Figure 9(b), the
per block remapping time for the CD algorithm is shown for varying numbers of machines and 200 subtasks.
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Figure 9: Per block remapping time of CD for (a) varying subtasks and (b) varying machines.

In Figure 10, the performance of the CD algorithm is compared with the GS algorithm for varying numbers of
subtasks. From the simulation results it can be observed that the CD algorithm is slightly outperforming the GS
algorithm. From the discussions in Section 3.6, it can be noted that the CD algorithm attempts to minimize the
length of the critical path at each remapping step. In the GS algorithm, the critical path through the DAG is not
considered when the subtasks are remapped. This is one reason for the better performance of the CD algorithm. The
GS algorithm has more remapping events compared to the hybrid remapper. The number of remapping events is
equal to the number of subtasks in the GS algorithm and equal to the number of blocks in the CD algorithm. The
increased number of remappings allows the GS algorithm to base its assignment decisions on more current values.
This may be why the GS is performing only three to four percent worst than the CD algorithm even though GS does
not consider the critical path through the DAG. In the GS algorithm, at least one machine may be waiting on the
scheduler to finish the mapping process. This scheduler induced wait time on the HC suite was not included in the
GS versus CD comparison.
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Figure 10: Performance of the CD algorithm versus the Generational Scheduling algorithm for
varying numbers of subtasks.

5. Related Work

Other groups have also studied dynamic mapping heuristics for HC systems (e.g., [5, 8, 11]). A brief
description of the GS algorithm and an experimental comparison of the hybrid remapper with the GS algorithm
were presented in Section 4. The Self-Adjusting Scheduling for Heterogeneous Systems (SASH) algorithm is
presented in [8]. One of the differences between the hybrid remapper and the SASH algorithm is that the hybrid
remapper uses a list-scheduling based algorithm to perform the remappings at run time, whereas the SASH
algorithm uses a variation of the branch and bound algorithm to generate the partial mappings at each remapping
event. Also, unlike the GS and SASH algorithms, the hybrid remapper presented here can use any initial mapping
to guide its remapping decisions, i.e., the initial mapping is used to compute the ranks and completion time estimates
in the hybrid remapper. It is necessary to experimentally determine how the quality of the initial mapping impacts
the overall performance of the hybrid remapper.

In [11], two mapping algorithms are presented. One is based on a distributed model and the other is based on a
centralized model. The distributed mapping algorithm is different from the algorithms presented in [5, 8], and the
hybrid remapper presented here, which are all centralized algorithms. The centralized mapping algorithm is based
on a global queue equalization algorithm.

6. Conclusions and Future Work

The simulation results indicate that the performance of a statically obtained initial mapping can be improved by
the hybrid remapper. From the simulation results obtained, performance improvement can be as much as 15% for
some cases. The timings also indicate that the remapping time needed per block of subtasks is in the order hundreds
of milliseconds for up to 50 machines and 500 subtasks. In the worst case situation, to obtain complete overlap, the
computation time for the shortest running subtask must be greater than the per block remapping time.

The experimental studies revealed that the hybrid remapper performs better than the generational scheduling,
but the margin of difference was only three to four percent. The hybrid remapper has a better machine utilization
compared to the generational scheduling algorithm, because in the hybrid remapper the mapping operations are
overlapped with the application execution. Further research is necessary to develop ways to improve the hybrid
remapper’s performance. This include examining the use of different schemes for partitioning the DAG into blocks,
exploring the use of different ways of ordering subtasks within a block, and investigating the use of different criteria
for determining subtask to machine assignments.

The partitioning scheme that is currently used in the hybrid remapper does not consider the usage pattern of the
data items produced by a subtask. The partitioning is solely based on the data dependencies. This could cause a
subtask with low rank value in a block k to be mapped before a subtask with high rank value in a block l , where
l > k . Various alternate partitioning schemes need to be explored and evaluated to examine different criteria for
forming blocks.

One of the features of the hybrid remapper algorithm presented here is the overlap of the execution of the
hybrid remapper algorithm with the execution of the subtasks. In the hybrid remapper developed in this research,
the remapping event for block k is the readiness to execute of the first block k −1 subtask. Hence, the number of
remapping events is equal to the number of blocks. In other algorithms, such as the Generational Scheduling
algorithm [5], the number of remapping events is equal to the number of subtasks. It is necessary to study the trade-
offs of increasing the number of remapping events on the performance of the algorithms and the amount of machine
idle time from having to wait for a mapping decision. Also, the interaction of varying the amount of uncertainty in
the parameter values and increasing the number of remapping events needs further research.

In this paper, the performance of the hybrid remapper is compared with the performance of the static baseline,
and the dynamic generational scheduling algorithm [5]. Further simulation studies are necessary to compare the
performance of the hybrid remapper with other dynamic mapping algorithms, such as the queue equalization
algorithm [11].

The hybrid remapper developed in this research assumed a fully connected, contention-free communication
model. This model needs to be improved to accommodate message contention and restricted inter-machine network
topologies that occur in practical situations. Also, enhancements are necessary to support cases where a subtask can
have multiple sources (machines) for a needed data item [17].

The performance of the hybrid remapper has been studied using simulations in this research. Exploring the
possibility of obtaining performance bounds using analytical methods is yet another possible area of future research.

Another future area of study is to evaluate the performance of the hybrid remapper when the initial mapping is
generated by a genetic algorithm (GA) based mapper [18]. Also, it would be interesting to compare the relative
performance of the hybrid remapper and the mapping obtained by a static GA-based mapper as the run-time values
of the parameters deviate from their expected values.

In summary, a new dynamic mapping algorithm called the hybrid remapper was presented in this paper. The
hybrid remapper uses novel heuristic approaches to dynamically improve a statically obtained initial mapping. The
potential of the hybrid remapper to improve the performance of initial static mappings was demonstrated using
simulation studies.
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